Abstract

Clinical gains have been reported from the use of nonstandard fractionation schedules planned with a radiobiological basis. Hyperfractionation provides the leading example, as described below, with accelerated fractionation being developed more recently. Although examples of almost every kind of fractionated schedule can be found in the literature over the past 90 years, it is only within the last decade that the biological factors concerning overall time and delayed proliferation after irradiation, and the effect of dose per fraction, have been understood. Both these factors operate differently on late- and early-reacting tissues, because cell proliferation in late-reacting tissues is slow or absent, but early reacting tissues and tumours depend upon cells that proliferate rapidly. This basic knowledge is still diffusing through the radiotherapy community and I hope this review will help the diffusion process. The biological factors concerning fractionation seem to apply to the majority of tissues and tumours, so that new schedules can be planned that are effective in practice. Attempts to deal with hypoxic cells in tumours or to use high-linear-energy-transfer (LET) radiation have been less generally successful, probably because in those strategies we need to identify subpopulations that are smaller. Tumours that are resistant to conventional radiotherapy because they contain hypoxic cells and do not reoxygenate cannot be identifed yet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.