Abstract

We use recently published redshift space distortion measurements of the cosmological growth rate, f sigma_8(z), to examine whether the linear evolution of perturbations in the R_h=ct cosmology is consistent with the observed development of large scale structure. We find that these observations favour R_h=ct over the version of LCDM optimized with the joint analysis of Planck and linear growth rate data, particularly in the redshift range 0 < z < 1, where a significant curvature in the functional form of f sigma_8(z) predicted by the standard model---but not by R_h=ct---is absent in the data. When LCDM is optimized using solely the growth rate measurements, however, the two models fit the observations equally well though, in this case, the low-redshift measurements find a lower value for the fluctuation amplitude than is expected in Planck LCDM. Our results strongly affirm the need for more precise measurements of f sigma_8(z) at all redshifts, but especially at z < 1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call