Abstract

In this paper, we derive the discrete linear-exponential-quadratic-Gaussian (LEQG) controller which can take both the system and measurement noise covariances into consideration. Comparing with the traditional linear-quadratic-Gaussian (LQG) design, the LEQG has the wilder design freedom. The proposed discrete LEQG control scheme is then applied to the study of reliable control which can tolerate abnormal operation within some pre-specified set of actuators. This is achieved by suitable modification of the algebraic Riccati equation for the design of the controller. The bounds of gain margins for the feedback control gains of reliable stabilization are also derived. The stability of the overall system is preserved despite the abnormal operation of actuators within a pre-specified subset in the bounds of gain margins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.