Abstract
Wound healing is a complex process that involves multiple intercellular and intracellular processes and extracellular interactions. Explanted human skin has been used as a model for the re-epithelialization phase of human wound healing. The currently used standard technique uses a circular punch biopsy tool to make the initial wound. Despite its wide use, the geometry of round wounds makes it difficult to measure them reliably. Our group has designed a linear wounding tool, and compared the variability in ex vivo human linear and circular wounds. An F test for differences in variances demonstrated that the linear wounds provided a population of wound size measurements that was 50% less variable than that obtained from a group of matched circular wounds. This reduction in variability would provide substantial advantages for the linear wound technique over the circular wound punch technique, by reducing the sample sizes required for comparative studies of factors that alter healing. This linear wounding tool thus provides a method for wounding that is standardized, provides minimal error in wound gap measurements, and is easily reproducible. We demonstrate its utility in an ex vivo model for the controlled investigation of human skin wounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.