Abstract

With a universally accepted abuse of terminology, materials having much larger stiffness for volumetric than for shear deformations are called incompressible. This work proposes two approaches for the evaluation of the correct form of the linear elasticity tensor of so-called incompressible materials, both stemming from non-linear theory. In the approach of strict incompressibility, one imposes the kinematical constraint of isochoric deformation. In the approach of quasi-incompressibility, which is often employed to enforce incompressibility in numerical applications such as the Finite Element Method, one instead assumes a decoupled form of the elastic potential (or strain energy), which is written as the sum of a function of the volumetric deformation only and a function of the distortional deformation only, and then imposes that the bulk modulus be much larger than all other moduli. The conditions which the elasticity tensor has to obey for both strict incompressibility and quasi-incompressibility have been derived, regardless of the material symmetry. The representation of the linear elasticity tensor for the quasi-incompressible case differs from that of the strictly incompressible case by one parameter, which can be conveniently chosen to be the bulk modulus. Some important symmetries have been studied in detail, showing that the linear elasticity tensors for the cases of isotropy, transverse isotropy and orthotropy are characterised by one, three and six independent parameters, respectively, for the case of strict incompressibility, and two, four and seven independent parameters, respectively, for the case of quasi-incompressibility, as opposed to the two, five and nine parameters, respectively, of the general compressible case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.