Abstract

Within the framework of the quasi-isobaric approximation (low Mach number), a self-consistent stability analysis of ablation fronts in inertial confinement fusion is performed for all the modes with a wavelength larger than the conduction length in the cold material. The validity domain is ranging from short to long wavelength modes, shorter and larger than the total thickness of the thermal wave, respectively. The analysis leads to a single analytical expression for the dispersion relation valid in the whole range of modes, including the transition regime (wavelength of the same order of magnitude as the total thickness). The hydrodynamic instabilities of ablation fronts are thus described by a unified theory in a large domain of conditions, ranging from weak acceleration in the early stage of irradiation to strong acceleration during the main implosion phase. In the weak acceleration regime, the transition between Darrieus-Landau unstable modes and damped oscillatory modes is described. Comparison with numerical results shows a good agreement. Comparison with the previous analyses sheds new light on the stabilization mechanism. The result of the sharp boundary model is recovered in the limit of large power index for thermal conduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.