Abstract

We introduce two direct quadrature methods based on linear rational interpolation for solving general Volterra integral equations of the second kind. The first, deduced by a direct application of linear barycentric rational quadrature given in former work, is shown to converge at the same rate as the rational quadrature rule but is costly on long integration intervals. The second, based on a composite version of this quadrature rule, loses one order of convergence but is much cheaper. Both require only a sample of the involved functions at equispaced nodes and yield an infinitely smooth solution of most classical examples with machine precision.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call