Abstract
In the paper, we employ an improved physics-informed neural network (PINN) algorithm to investigate the data-driven nonlinear wave solutions to the nonlocal Davey-Stewartson (DS) I equation with parity-time (PT) symmetry, including the line breather, kink-shaped and W-shaped line rogue wave solutions. Both the PT symmetry and model are introduced into the loss function to strengthen the physical constraint. In addition, since the nonlocal DS I equation is a high-dimensional coupled system, this leads to an increase in the number of output results. The PT symmetry also needs to be learned that is not given in advance, which increases challenges in computing for multi-output neural networks. To address these problems, our objective is to assign various levels of weight to different items in the loss function. The experimental results show that the improved algorithm has better prediction accuracy to a certain extent compared with the original PINN algorithm. This approach is feasible to investigate complex nonlinear waves in a high-dimensional model with PT symmetry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.