Abstract

MYC is a major oncogenic driver of Multiple Myeloma (MM) and yet almost no therapeutic agents exist that target MYC in MM. Here we report that the let-7 biogenesis inhibitor LIN28B correlates with MYC expression in MM and is associated with adverse outcome. We also demonstrate that the LIN28B/let-7 axis modulates the expression of MYC, itself a let-7 target. Further, perturbation of the axis regulates the proliferation of MM cells in vivo in a xenograft tumor model. RNA sequencing and gene set enrichment analyses of CRISPR-engineered cells further suggest that the LIN28/let-7 axis regulates MYC and cell cycle pathways in MM. We provide proof-of-principle for therapeutic regulation of MYC through let-7 with an LNA-GapmeR containing a let-7b mimic in vivo, demonstrating that high levels of let-7 expression repress tumor growth by regulating MYC expression. These findings reveal a novel mechanism of therapeutic targeting of MYC through the LIN28B/let-7 axis in MM that may impact other MYC dependent cancers as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.