Abstract

AbstractMutualistic interactions between defended species represent a striking case of evolutionary convergence in sympatry, driven by the increased protection against predators brought by mimicry in warning traits. However, such convergence is often limited: sympatric defended species frequently display different or imperfectly similar warning traits. The phylogenetic distance between sympatric species may indeed prevent evolution toward the exact same signal. Moreover, warning traits are also involved in mate recognition, so trait convergence might result in heterospecific courtship and mating. Here, we develop a mathematical model to investigate the strength and direction of the evolution of warning traits in defended species with different ancestral traits. Specifically, we determine the effect of phenotypic distances between ancestral trait states of sympatric defended species and of the costs of heterospecific sexual interactions on imperfect mimicry and trait divergence. Our analytical results confirm that reproductive interference and historical constraints limit the convergence of warning traits, leading to either complete divergence or imperfect mimicry. Our model reveals that imperfect mimicry evolves only when ancestral trait values differ between species because of historical constraints and highlights the importance of female and predator discrimination in the evolution of such imperfect mimicry. Our study thus provides new predictions on how reproductive interference interacts with historical constraints and may promote the emergence of novel warning traits, enhancing mimetic diversity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call