Abstract

Oxygen penetration is a key determinant of sediment nitrification rates. In this study, we analyzed the effect of oxygen penetration on the sediment nitrification rate based on sediment oxygen profiles. Six sediments were designed to produce different oxygen profiles by adding different amounts of silica gel to the collected river mud. The oxygen profiles in the sediment were detected using a voltammetric microelectrode. With increased mud content, the sediment oxygen penetration depth decreased from 8.3 to 2.6 mm, and the oxygen concentration in the overlying water and at the sediment-water interface also showed a decreasing trend. The measured nitrification rate displayed a quadratic pattern that changed with the increase in mud content. Based on the detected oxygen profiles, the nitrification rate at each depth was calculated and summed to obtain the bulk sediment nitrification rate. The bulk sediment nitrification rate showed a consistently changing pattern with the measured rate. Oxygen profiles used to calculate nitrification rates could be approximated by the penetration depth (δ). The resulting nitrification model based on δ could explain the limiting role of oxygen penetration in sediment nitrification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call