Abstract
AbstractThe limiting behavior of sequences of quasiconformal homeomorphisms of the n-sphere Sn is studied using a substitute to the Poincaré extension of Möbius transformations introduced by Tukia. Adapted versions of the limit set and the conical limit set known in the theory of Kleinian groups are utilized. Most of the results also hold for families of homeomorphisms of Sn with the convergence property introduced by Gehring and Martin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.