Abstract

The electroluminescence (EL) properties of InGaN-based micro-LEDs grown on a silicon substrate are investigated in this Letter to reveal the dominant mechanism in dependence on different temperatures and dimensions. The invalidation of sidewall nonradiative recombination and the impact of localization-induced carrier tunneling on the external quantum efficiency (EQE) are analyzed systematically to realize high performance silicon-based micro-LEDs. Microscopic EL mapping exhibits that the localized carriers in the silicon-grown micro-LED mainly recombine in the central region of mesa. The defects in the multiple quantum wells (MQWs) grown on the silicon substrate can lead to carrier tunneling and EQE reduction at cryogenic temperatures below 200 K, which is more conspicuous for the 30 μm device with a larger inner area ratio. The low-temperature EQE evolution can be attributed to the trade-off between localization-induced tunneling and Shockley-Read-Hall (SRH) recombination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.