Abstract
Let $P$ be a packing of balls in Euclidean space ${E^n}$ having the property that the radius of every ball of $P$ lies in the interval $[1/k,k]$. If $G$ is a Schottky group associated to $P$, then the Hausdorff dimension of the topological limit set of $G$ is less than a uniform constant $C(k,n) < n$. In particular, this limit set has zero volume.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.