Abstract

The convergence of the Boltzmann equation to the compressible Euler equations when the Knudsen number tends to zero has been a long-standing open problem in kinetic theory. In the setting of a Riemann solution that contains the generic superposition of shock, rarefaction wave, and contact discontinuity to the Euler equations, we succeed in justifying this limit by introducing hyperbolic waves with different solution backgrounds to capture the extra masses carried by the hyperbolic approximation of the rarefaction wave and the diffusion approximation of contact discontinuity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.