Abstract
This paper investigates the speed limit of information propagation in large-scale multihop wireless networks, which provides fundamental understanding of the fastest information transportation and delivery that a wireless network is able to accommodate. We show that there exists a unified speed upper bound for broadcast and unicast communications in large-scale wireless networks. When network connectivity is considered, this speed bound is a function of node density. If the network noise is constant, the bound is a constant when node density exceeds a threshold; if the network noise is an increasing function of node density, the bound decreases to zero when node density approaches infinity. As achieving the speed bound places strict requirements on node locations, we also quantify the gap between the actual achieved speed and the desired bound in random networks in which the relay nodes are not located as desired. We find that the gap converges to zero exponentially as node density increases to infinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.