Abstract

The question of how subdivision of embryo into cell territories acquiring different fates is coordinated with morphogenetic movements shaping the embryonic body still remains poorly resolved. In the present report, we demonstrate that a key regulator of anterior neural plate patterning, the homeodomain transcriptional repressor Xanf1/Hesx1, can bind to the LIM-domain protein Zyxin, which is known to regulate cell morphogenetic movements via influence on actin cytoskeleton dynamics. Using a set of deletion mutants, we found that the Engrailed-type repressor domain of Xanf1 and LIM2-domain of Zyxin are primarily responsible for interaction of these proteins. We also demonstrate that Zyxin overexpression in Xenopus embryos elicits effects similar to those observed in embryos with downregulated Xanf1. In contrast, when the repressor-fused variant of Zyxin is expressed, the forebrain enlargements typical for embryos overexpressing Xanf1 develop. These results are consistent with a possible role of Zyxin as a negative modulator of Xanf1 transcriptional repressing activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.