Abstract
In September 2021, a site scouting mission known as the TRIDENT pathfinder experiment (TRIDENT EXplorer, T-REX for short) was conducted in the South China Sea with the goal of envisaging a next-generation multi-cubic-kilometer neutrino telescope. One of the main tasks is to measure the in-situ optical properties of seawater at depths between 2800 m and 3500 m, where the neutrino telescope will be instrumented. To achieve this, we have developed a light emitter module equipped with a clock synchronization system to serve as the light source, which could be operated in pulsing and steady modes. Two light receiver modules housing both photomultiplier tubes (PMTs) and cameras are employed to detect the photons emitted by the light source. This paper presents the instrumentation of the light source in T-REX, including its design, calibration, and performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.