Abstract

AbstractWe present our recent measurement of the kinematics of the Milky Way stellar halo (Light Side) and the derived mass of the dark matter halo (Dark Side) using the Jeans analysis. A tangential dip in the velocity anisotropy profile at r ~ 17 kpc (Kafle et al. 2012), and a distinct difference of ~65 kms−1 in the mean azimuthal velocity and the r.m.s dispersion of the most metal-rich and the metal-poor Blue Horizontal Branch stars we find (Kafle et al. 2013) are reported. The implications of this on the current controversial issue of an existence of the two-components in the halo are also discussed.Aided with the kinematic measurements of the light side, we demonstrate how we infer the dynamical property of the dark side. Considering a realistic three component galaxy model (Hernquist bulge, Miyamoto-Nagai disk and NFW halo), we estimate the virial mass of the Galaxy to be Mvir = 1.2+0.5−0.4 × 1012M⊙ (Kafle et al. 2012). We also show that the rotation curve of the Galaxy has undulations similar to what have also been seen in the studies of the HI gas (Sofue et al. 2009).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.