Abstract

In sporadic breast cancers, BRCA-1 expression is down-regulated in the absence of mutations in the BRCA-1 gene. This suggests that disruption of BRCA-1 expression may contribute to the onset of mammary tumors. Environmental contaminants found in industrial pollution, tobacco smoke, and cooked foods include benzo(a)pyrene [B(a)P] and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which have been shown to act as endocrine disruptors and tumor promoters. In previous studies, we documented that estrogen (E2) induced BRCA-1 transcription through the recruitment of an activator protein-1/estrogen receptor-alpha (ER alpha) complex to the proximal BRCA-1 promoter. Here, we report that activation of BRCA-1 transcription by E2 requires occupancy of the BRCA-1 promoter by the unliganded aromatic hydrocarbon receptor (AhR). The stimulatory effects of E2 on BRCA-1 transcription are counteracted by (a) cotreatment with the AhR antagonist 3'-methoxy-4'-nitroflavone; (b) transient expression in ER alpha-negative HeLa cells of ER alpha lacking the protein-binding domain for the AhR; and (c) mutation of two consensus xenobiotic-responsive elements (XRE, 5'-GCGTG-3') located upstream of the ER alpha-binding region. These results suggest that the physical interaction between the unliganded AhR and the liganded ER alpha plays a positive role in E2-dependent activation of BRCA-1 transcription. Conversely, we show that the AhR ligands B(a)P and TCDD abrogate E2-induced BRCA-1 promoter activity. The repressive effects of TCDD are paralleled by increased recruitment of the liganded AhR and HDAC1, reduced occupancy by p300, SRC-1, and diminished acetylation of H4 at the BRCA-1 promoter region flanking the XREs. We propose that the ligand status of the AhR modulates activation of the BRCA-1 promoter by estrogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.