Abstract

The ligand field (LF) of transition metal ions is a crucial factor in realizing the mechanism of novel physical and chemical properties. However, the low-crystallinity state, including the amorphous state, precludes the clarification of the electronic structural relationship of transition metal ions using crystallographic techniques, ultraviolet and infrared optical methods, and magnetometry. Here, we demonstrate that soft X-ray 2p → 3d core-level absorption spectroscopy (L2,3-edge XAS) systematically revealed the local 3d electronic states, including in the LF, of nitrogen-coordinated transition-metal ions for low-crystallinity cyanide-bridged metal-organic frameworks (MOFs) M[Ni(CN)4] (MNi; M = Mn, Fe, Co, Ni) and Ni[Pd(CN)4] (NiPd). In NiNi and NiPd, N-coordinated Ni ions with square-planar symmetry exhibit strong orbital hybridization and ligand-to-metal charge transfer effects. In MnNi, FeNi, and CoNi, the correlation between the crystalline electric field splitting in the LF and the transition metal-nitrogen bonding length is revealed using the multiplet LF theory. Regardless of the different local symmetries, our results indicate that L2,3-edge XAS is a powerful tool for gaining element-specific knowledge about the transition-metal ion characterizing the functionality of low-crystallinity MOFs and will be the foundation for an attractive platform, such as adsorption/desorption materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.