Abstract

Zinc serves regulatory functions in cells and thus, several mechanisms exist for tight control of its homeostasis. One mechanism is storage in and retrieval from vesicles, so-called zincosomes, but the chemical speciation of zincosomal zinc has remained enigmatic. Here, we determine the intravesicular zinc-coordination in isolated zincosomes in comparison to intact RAW264.7 murine macrophage cells. In elemental maps of a cell monolayer, generated by microbeam X-ray fluorescence, zincosomes were identified as spots of high zinc accumulation. A fingerprint for the binding motif obtained by μXANES (X-ray absorption near edge structure) matches the XANES from isolated vesicles; zinc is not free, but present as a complexed form (average coordination; 1.0 sulfur, 2,5 histidines 30 and 1.0 oxygen), resembling regulatory or catalytic zinc sites in proteins. Such coordination enables reversible binding, acting as a ‘zinc sink’, facilitating the accumulation of high amounts of zinc against a concentration gradient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.