Abstract

The triangular fibrocartilage complex (TFCC) is a known stabiliser of the distal radioulnar joint (DRUJ). An injury to these structures can result in significant disability including pain, weakness and joint stiffness. The contribution each of its components makes to the stability of the TFCC is not well understood. This study was undertaken to investigate the role of the individual ligaments of the TFCC and their contribution to joint stability.The study was undertaken in two parts. 30 cadaveric forearms were studied in each group. The ligaments of the TFCC were progressively sectioned and the resulting effect on the stability of the DRUJ was measured. A custom jig was created to apply a 20N force through the distal radius, with the ulna fixed.Experiment one measured the effect on DRUJ translation after TFCC sectioning. Experiment two added the measurement of rotational instability.Part one of the study showed that complete sectioning of the TFCC caused a mean increase in translation of 6.09(±3) mm. Sectioning the palmar radioulnar ligament of the TFCC caused the most translation.Part two demonstrated a change in rotation with a mean of 18 (± 6) degrees following sectioning of the TFCC. There was a progressive increase in rotational instability until the palmar radioulnar ligament was also sectioned.Linear translation consistently increased after sectioning all of the TFCC ligaments, confirming its importance for DRUJ stability. Sectioning of the palmar radioulnar ligament most commonly caused the greatest degree of translation. This suggests injury to this ligament would more likely result in a greater degree of translational instability. The increase in rotation also suggests that this type of instability would be symptomatic in a TFCC injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.