Abstract

A zeolite-containing mixed matrix membrane (MMM) is an attractive option to overcome the performance limits of polymeric membranes for large-scale gas separations. The poor interfacial adhesion between zeolites and polymers, however, should be addressed to realize the excellent separation performance of zeolites on large industrial scale. Herein, the interfacial void-free MMMs with incorporation of intact MFI type zeolite particles were successfully prepared by applying the Lifshitz-van der Waals acid-base theory for the selection of the appropriate polymer matrix. Our simple, but systematic approach was based on the adhesion force between MFI particles and a surrounding polymer matrix. The relatively high Lewis basicity of cellulose acetate (CA) leads to highest adhesion force with MFI particles among the tested polymer matrices, suppressing interfacial void formation. In addition, a careful analysis revealed that any residual surfactants on the surface of MFI particles are detrimental to fabricate interfacial void-free MMMs. Single gas (i.e. N2 and NF3) transport in the CA/MFI MMMs were characterized by changing the concentration of MFI particles up to 30 wt%. N2 permeability of CA/MFI MMMs was improved by as much as 304% compared to that of bare CA membranes with maintaining N2/NF3 permselectivity. Furthermore, gas transports in CA/MFI MMMs by varying the size of MFI particles from 0.2 through 0.6 up to 1.5 μm were analyzed by using the Lewis-Nielsen model. Our systematic theory-based guidance can be utilized to offer the appropriate polymer candidates for the zeolite-containing MMMs for high performance gas separations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.