Abstract
We study the effects of quantum fluctuations and thermal perturbations on the lifetime of the soliton in the improved Davydov model proposed by us with two-quanta and with an added interaction. By using quantum perturbation theory, we compute the soliton lifetime for a wide ranges of parameter values relevant for protein molecules. The lifetime of the new soliton at the biological temperature 300 K is of the order of 10(-10) second or tau/tau (0) greater than or equal to 500 for parameters appropriate to alpha -helical protein molecules. This shows clearly that the new soliton in the improved model is a viable mechanism for the bio-energy transport in the alpha -helix region of proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.