Abstract

Halobacteria spontaneously reverse their swimming direction about every 10 s. This behavioral pattern is transiently disturbed upon stimulation through sensory photosystems of different spectral sensitivity. As a result of stimulation, a single swimming interval is either prolonged (attractant response) or shortened (repellent response). Thereafter the cell returns to its antonomous reversal rhythm, i.e., it quickly adapts. Method are presented to determine the lifetime of repellent as well as of attractant cellular signals at the site of signal integration, using particular stimulation programs. Independent of the photosystem through which the signals were generated, the total lifetime of a repellent signal was 1.3 s. The decay of the signal was rapid during the first 100 ms and slow thereafter. The lifetime of an attractant signal was about 4 s and likewise did not depend on the photosystems. The degree of methylation of membrane proteins was increased by attractant stimuli and decreased by repellent stimuli. Inhibition of protein methylation by homocysteine was accompanied by a slowdown of the decay of both the repellent and attractant signal. A mutant strain with an increased demethylation also gave increased signal lifetimes. A lowered Ca 2+ concentration, which activates methylation in vivo, led to shortened signal lifetimes. Methylation is proposed to be the mechanism which limits the signal lifetime and thereby allows the cells to adapt.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call