Abstract

When considered to be open in the thermodynamic sense with respect to the enclosed gas, bubbles that are present in a liquid bulk phase are unstable in all respects and tend to dissolve. Conversely, full mechanical (and physicochemical) stability is guaranteed when a bubble is closed with respect to the gaseous component. By assuming the diffusion of dissolved gas molecules away from a spherical gas bubble to determine the shrinkage rate, we calculate the lifetime of a bubble as a function of its size. Gas bubbles in the colloidal size range, with radii between 10 and 100 nm, have surprisingly short lifetimes, between about 1 and 100 μs, whereas a nm-sized bubble can persist for months. Our results (which confirm and partwise extend the old calculations of Epstein and Plesset [5] [J. Chem. Phys., 18 (1950) 1505], indicate that the bridging bubble/cavity mechanism proposed earlier, can hardly provide the proper explanation of the long-ranged attraction force observed between hydrophobic surfaces immersed in water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.