Abstract
We study the Lie module structure given by the Gerstenhaber bracket on the Hochschild cohomology groups of a monomial algebra with radical square zero. The description of such Lie module structure will be given in terms of the combinatorics of the quiver. The Lie module structure will be related to the classification of finite dimensional modules over simple Lie algebras when the quiver is given by the two loops and the ground field is the complex numbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Algebra
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.