Abstract
Starting from the general concept of a Lie derivative of an arbitrary differentiable map, we develop a systematic theory of Lie differentiation in the framework of reductive G-structures P on a principal bundle Q. It is shown that these structures admit a canonical decomposition of the pull-back vector bundle [Formula: see text] over P. For classical G-structures, i.e. reductive G-subbundles of the linear frame bundle, such a decomposition defines an infinitesimal canonical lift. This lift extends to a prolongation Γ-structure on P. In this general geometric framework the concept of a Lie derivative of spinor fields is reviewed. On specializing to the case of the Kosmann lift, we recover Kosmann's original definition. We also show that in the case of a reductive G-structure one can introduce a "reductive Lie derivative" with respect to a certain class of generalized infinitesimal automorphisms, and, as an interesting by-product, prove a result due to Bourguignon and Gauduchon in a more general manner. Next, we give a new characterization as well as a generalization of the Killing equation, and propose a geometric reinterpretation of Penrose's Lie derivative of "spinor fields". Finally, we present an important application of the theory of the Lie derivative of spinor fields to the calculus of variations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Geometric Methods in Modern Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.