Abstract

In this paper we initiate a systematic study of the well-posedness theory of the Einstein constraint equations on compact manifolds with boundary. This is an important problem in general relativity, and it is particularly important in numerical relativity, as it arises in models of Cauchy surfaces containing asymptotically flat ends and/or trapped surfaces. Moreover, a number of technical obstacles that appear when developing the solution theory for open, asymptotically Euclidean manifolds have analogues on compact manifolds with boundary. As a first step, here we restrict ourselves to the Lichnerowicz equation, also called the Hamiltonian constraint equation, which is the main source of nonlinearity in the constraint system. The focus is on low regularity data and on the interaction between different types of boundary conditions, which has not been carefully analysed before. In order to develop a well-posedness theory that mirrors the existing theory for the case of closed manifolds, we first generalize the Yamabe classification to nonsmooth metrics on compact manifolds with boundary. We then extend a result on conformal invariance to manifolds with boundary, and prove a uniqueness theorem. Finally, by using the method of sub- and super-solutions (order-preserving map iteration), we establish several existence results for a large class of problems covering a broad parameter regime, which includes most of the cases relevant in practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.