Abstract
Evolutionary crystal structure prediction searches have been employed to explore the ternary Li-F-H system at 300 GPa. Metastable phases were uncovered within the static lattice approximation, with LiF3H2, LiF2H, Li3F4H, LiF4H4, Li2F3H, and LiF3H lying within 50 meV/atom of the 0 K convex hull. All of these phases contain HnFn+1 - (n = 1, 2) anions and Li+ cations. Other structural motifs such as LiF slabs, H3 + molecules, and Fδ- ions are present in some of the low enthalpy Li-F-H structures. The bonding within the HnFn+1 - molecules, which may be bent or linear, symmetric or asymmetric, is analyzed. The five phases closest to the hull are insulators, while LiF3H is metallic and predicted to have a vanishingly small superconducting critical temperature. Li3F4H is predicted to be stable at zero pressure. This study lays the foundation for future investigations of the role of temperature and anharmonicity on the stability and properties of compounds and alloys in the Li-F-H ternary system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The Journal of chemical physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.