Abstract
The Levenberg-Marquardt method and its modified versions are studied. Under some local conditions on the operator (in a neighborhood of a solution), strong and weak convergence of iterations is established with the solution error monotonically decreasing. The conditions are shown to be true for one class of nonlinear integral equations, in particular, for the structural gravimetry problem. Results of model numerical experiments for the inverse nonlinear gravimetry problem are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Steklov Institute of Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.