Abstract

The chromosome of Escherichia coli is negatively supercoiled. This favours processes that unwind the two DNA strands, such as DNA replication. In this paper, we have investigated the effect of changed levels of overall chromosomal supercoiling on the initiation of DNA replication. Specifically, we have used flow cytometry to reveal effects on the synchrony of initiations of DNA replication in single cells. An increase in the level of supercoiling moderately reduced initiation synchrony. In contrast, decreased supercoiling led to pronounced asynchrony. We have excluded the possibility that this asynchrony is caused by changes in the level of the Dam methyltransferase or the DnaA protein. We suggest that the global level of supercoiling influences the topology of oriC and thereby the sequence of events leading to initiation of DNA replication in E. coli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.