Abstract

The polycyclic aromatic hydrocarbon (PAH) dibenzo[a,l]pyrene (DB[a,l]P), the most carcinogenic PAH tested in rodent bioassays, exerts its pathobiological activity via metabolic formation of electrophilically reactive DNA-binding fjord region (+)-syn-(11S,12R,13S,14R)- or (-)-anti-(11R,12S,13S,14R)-DB[a,l]P-dihydrodiol epoxides (DB[a,l]-PDEs). DB[a,l]P is metabolized to these DB[a,l]PDEs which bind to DNA in human mammary carcinoma MCF-7 cells. The molecular response of MCF-7 cells to DNA damage caused by DB[a,l]PDEs was investigated by analyzing effects on the expression of the tumor suppressor protein p53 and one of its target gene products, the cyclin-dependent kinase inhibitor p21WAF1. Treatment of MCF-7 cells with (+)-syn- and (-)-anti-DB[a,l]PDE at a concentration range of 0.001-0.1 microM resulted in DB[a,l]PDE-DNA adduct levels between 2 and 30, and 3 and 80 pmol/mg DNA, respectively, 8 h after exposure. (-)-anti-DB[a,l]PDE exhibited a higher binding efficiency that correlated with a significantly stronger p53 response at low concentrations of the dihydrodiol epoxides. The level of p53 increased by 6-8 h after treatment. The p21WAF1 protein amount exceeded control levels by 12 h and remained elevated for 96 h. At a dose of 0.01 microM (+)-syn-DB[a,l]PDE, an increase in p21WAF1 was observed in the absence of a detectable change in p53 levels. The results indicate that the increase in p53 induced by DB[a,l]PDEs in MCF-7 cells requires an adduct level of approximately 15 pmot/mg DNA and suggest that the level of adducts rather than the specific structure of the DB[a,l]PDE-DNA adduct formed triggers the p53 response. The PAH-DNA adduct level formed may determine whether p53 and p21VAF1 pathways respond, resulting in cell-cycle arrest, or fail to respond and increase the risk of mutation induction by these DNA lesions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call