Abstract

The APOBEC family of mammalian cytidine deaminases, such as APOBEC3G (hA3G), has been demonstrated to function as a host viral restriction factor against HIV-1. hA3G has been shown to cause extensive G-to-A mutations in the HIV-1 genome, which may play a role in viral restriction. To investigate the role of G-to-A mutations in HIV-1 pathogenesis, we isolated, amplified, and sequenced HIV-1 sequences (vif, gag, and env) from 29 therapy-naive HIV-1-infected individuals. The levels of G-to-A mutations correlated with the expression levels of hA3G in the vif (rho = 0.438, p = 0.041) and the env regions (rho = 0.392, p = 0.038), but not in the gag region (rho = 0.131, p = 0.582). There is no correlation between viral load and the level of G-to-A mutations in the vif (rho = 0.144, p = 0.522), env (rho = 0.168, p = 0.391), or gag regions (rho = -0.254, p = 0.279). Taken together, these findings suggest that the hA3G-induced G-to-A mutations may not be the mechanism by which hA3G restricts or controls viral replication. Thus, hA3G might be restricting viral growth in infected individuals through a mechanism that is independent of the cytidine deaminase activities of hA3G.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.