Abstract

Hair cell responses are recorded from third turn of the guinea pig cochlea in order to define the relationship between hair cell depolarization and position of the basilar membrane. Because the latter is determined locally, using the cochlear microphonic recorded in the organ of Corti (OC) fluid space, no corrections are required to compensate traveling wave and/or synaptic delays. At low levels, inner hair cells (IHC) depolarize near basilar membrane velocity to scala vestibuli reflecting the free standing nature of their stereocilia. At high levels, the time of depolarization changes rapidly from velocity to scala vestibuli to the scala tympani phase of the basilar membrane response. This change in response phase, recorded in the fundamental component of the IHC response, is associated with a decrease in response magnitude. The absence of this behavior in OC and outer hair cell responses implies that basilar membrane mechanics may not be responsible for these response patterns. Because these features are reminiscent of the magnitude notches and the large phase shifts observed in single unit responses at high stimulus levels, they provide the IHC correlates of these phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.