Abstract
Bacterial fructosyltransferase (FTF) enzymes synthesize fructan polymers from sucrose. FTFs catalyse two different reactions, depending on the nature of the acceptor, resulting in: (i) transglycosylation, when the growing fructan chain (polymerization), or mono- and oligosaccharides (oligosaccharide synthesis), are used as the acceptor substrate; (ii) hydrolysis, when water is used as the acceptor. Lactobacillus reuteri 121 levansucrase (Lev) and inulosucrase (Inu) enzymes are closely related at the amino acid sequence level (86 % similarity). Also, the eight amino acid residues known to be involved in catalysis and/or sucrose binding are completely conserved. Nevertheless, these enzymes differ markedly in their reaction and product specificities, i.e. in beta(2-->6)- versus beta(2-->1)-glycosidic-bond specificity (resulting in levan and inulin synthesis, respectively), and in the ratio of hydrolysis versus transglycosylation activities [resulting in glucose and fructooligosaccharides (FOSs)/polymer synthesis, respectively]. The authors report a detailed characterization of the transglycosylation reaction products synthesized by the Lb. reuteri 121 Lev and Inu enzymes from sucrose and related oligosaccharide substrates. Lev mainly converted sucrose into a large levan polymer (processive reaction), whereas Inu synthesized mainly a broad range of FOSs of the inulin type (non-processive reaction). Interestingly, the two FTF enzymes were also able to utilize various inulin-type FOSs (1-kestose, 1,1-nystose and 1,1,1-kestopentaose) as substrates, catalysing a disproportionation reaction; to the best of our knowledge, this has not been reported for bacterial FTF enzymes. Based on these data, a model is proposed for the organization of the sugar-binding subsites in the two Lb. reuteri 121 FTF enzymes. This model also explains the catalytic mechanism of the enzymes, and differences in their product specificities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.