Abstract

Recessive mutations in the ubiquitously expressed POLR3A and POLR3B genes are the most common cause of POLR3-related hypomyelinating leukodystrophy (POLR3-HLD), a rare childhood-onset disorder characterized by deficient cerebral myelin formation and cerebellar atrophy. POLR3A and POLR3B encode the two catalytic subunits of RNA Polymerase III (Pol III), which synthesizes numerous small non-coding RNAs. We recently reported that mice homozygous for the Polr3a mutation c.2015G > A (p.Gly672Glu) have no neurological abnormalities and thus do not recapitulate the human POLR3-HLD phenotype. To determine if other POLR3-HLD mutations can cause a leukodystrophy phenotype in mouse, we characterized mice carrying the Polr3b mutation c.308G > A (p.Arg103His). Surprisingly, homozygosity for this mutation was embryonically lethal with only wild-type and heterozygous animals detected at embryonic day 9.5. Using proteomics in a human cell line, we found that the POLR3B R103H mutation severely impairs assembly of the Pol III complex. We next generated Polr3aG672E/G672E/Polr3b+/R103Hdouble mutant mice but observed that this additional mutation was insufficient to elicit a neurological or transcriptional phenotype. Taken together with our previous study on Polr3a G672E mice, our results indicate that missense mutations in Polr3a and Polr3b can variably impair mouse development and Pol III function. Developing a proper model of POLR3-HLD is crucial to gain insights into the pathophysiological mechanisms involved in this devastating neurodegenerative disease.

Highlights

  • Recessive mutations in POLR3A, POLR3B, POLR1C and POLR3K cause RNA Polymerase III-related hypomyelinating leukodystrophy (POLR3-Hypomyelinating leukodystrophy (HLD)), [1,2,3,4] a devastating childhood-onset neurodegenerative disorder characterized by motor regression, cerebellar features and/or cognitive dysfunction, as well as hypomyelination and cerebellar atrophy on magnetic resonance imaging (MRI) [5]

  • We recently reported that mice homozygous for the French Canadian founder mutation Polr3a c.2015G > A (p.Gly672Glu) have normal motor function, myelination and cerebellar integrity and do not recapitulate the human POLR3-HLD phenotype [6]

  • In this follow-up study, we assessed the impact of a different POLR3-HLD-causing mutation, Polr3b c.308G > A (p.Arg103His), and found that it has a severe impact on mouse development and on Polymerase III (Pol III) biogenesis, indicating that mutations in Pol III subunits have variable effects in mice that may be a consequence of their specific defects on Pol III function

Read more

Summary

Introduction

Recessive mutations in POLR3A, POLR3B, POLR1C and POLR3K cause RNA Polymerase III-related hypomyelinating leukodystrophy (POLR3-HLD), [1,2,3,4] a devastating childhood-onset neurodegenerative disorder characterized by motor regression, cerebellar features and/or cognitive dysfunction, as well as hypomyelination and cerebellar atrophy on magnetic resonance imaging (MRI) [5]. We recently reported that mice homozygous for the French Canadian founder mutation Polr3a c.2015G > A (p.Gly672Glu) have normal motor function, myelination and cerebellar integrity and do not recapitulate the human POLR3-HLD phenotype [6].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call