Abstract

The leucine-rich repeat domain of Internalin B is composed of seven tandem leucine-rich repeats, which each contain a short beta strand connected to a 3(10) helix by a short turn, and an N-terminal alpha-helical capping motif. To determine whether folding proceeds along a single, discrete pathway or multiple, parallel pathways, and to map the structure of the transition state ensemble, we examined the effects of destabilizing substitutions of conserved residues in each repeat. We find that, despite the structural redundancy among the repeats, folding proceeds through an N-terminal transition state ensemble in which the extent of structure formation is biased toward repeats one and two and includes both local and interrepeat interactions. Our results suggest that the N-terminal capping motif serves to polarize the folding pathway by acting as a fast-growing nucleus onto which consecutive repeats fold in the transition state ensemble, and highlight the importance of sequence-specific interactions in pathway selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.