Abstract

The spectrin-based membrane skeleton plays an important role in determining the distributions and densities of receptors, ion channels, and pumps, thus influencing cell shape and deformability, cell polarity, and adhesion. In the paradigmatic human erythrocyte, short tropomodulin-capped actin filaments are cross-linked by spectrin into a hexagonal network, yet the extent to which this type of actin filament organization is utilized in the membrane skeletons of nonerythroid cells is not known. Here, we show that associations of tropomodulin and spectrin with actin in bovine lens fiber cells are distinct from that of the erythrocyte and imply a very different molecular organization. Mechanical disruption of the lens fiber cell membrane skeleton releases tropomodulin and actin-containing oligomeric complexes that can be isolated by gel filtration column chromatography, sucrose gradient centrifugation and immunoadsorption. These tropomodulin-actin complexes do not contain spectrin. Instead, spectrin is associated with actin in different complexes that do not contain tropomodulin. Immunofluorescence staining of isolated fiber cells further demonstrates that tropomodulin does not precisely colocalize with spectrin along the lateral membranes of lens fiber cells. Taken together, our data suggest that tropomodulin-capped actin filaments and spectrin-cross-linked actin filaments are assembled in distinct structures in the lens fiber cell membrane skeleton, indicating that it is organized quite differently from that of the erythrocyte membrane skeleton. Cell Motil. Cytoskeleton 46:257–268, 2000. © 2000 Wiley-Liss, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call