Abstract
The aim of this paper is to study the Lelong number, the integrability index and the Monge–Ampere mass at the origin of an $S^1$-invariant plurisubharmonic function on a balanced domain in $\mathbb{C}^n$ under the Schwarz symmetrization. We prove that $n$ times the integrability index is exactly the Lelong number of the symmetrization, and if the function is further toric with a single pole at the origin, then the Monge–Ampere mass is always decreasing under the symmetrization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.