Abstract

A two-dimensional deformation means that the displacements ui, (i= 1,2,3) or the stresses σij depend on x1 and x2 only. Among several formalisms for two-dimensional deformations of anisotropic elastic materials the Lekhnitskii (1950, 1957) formalism is the oldest, and has been extensively employed by the engineering community. The Lekhnitskii formalism essentially generalizes the Muskhelishvili (1953) approach for solving two-dimensional deformations of isotropic elastic materials. The formalism begins with the stresses and assumes that they depend on x1 and x2 only. The Stroh formalism, to be introduced in the next chapter, starts with the displacements and assumes that they depend on x1 and x2 only. Therefore the Lekhnitskii formalism is in terms of the reduced elastic compliances while the Stroh formalism is in terms of the elastic stiffnesses. It should be noted that Green and Zerna (1960) also proposed a formalism for two-dimensional deformations of anisotropic elastic materials. Their approach however is limited to materials that possess a symmetry plane at x3=0. The derivations presented below do not follow exactly those of Lekhnitskii.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.