Abstract

Sodium channels are highly expressed in nociceptive sensory neurons during hypernociceptive conditions. Based on the presence of a glycosidic portion in the sodium channel β subunit associated to the antinociceptive effect of leguminous lectins via lectin domain, this study investigated the antinociceptive activity of the lectin isolated fromLonchocarpus araripensisseeds (LAL) in micebehavioralmodels andin NaV current in the nociceptor of rat dorsal root ganglion (DRG). LAL antinociceptive activity and the participation of opioid system, lectin domain and sodium channels were evaluated in Swiss mice models of nociception (formalin, capsaicin, hot plate, tail flick, von Frey) and in primary cultures of Wistar rats neurons of DRG (patch clamp). LAL presented inhibitory effects in the nociception induced by chemical and mechanical, but not by thermal stimuli and reduced total Na(+) current. LAL activity was inhibited by the lectin association with its binding sugar N-acethyl-glucosamine. LAL inhibits peripheral hypernociception by mechanisms that involve the lectin domain, inflammatory mediators and Na(+) channels. The innovative inhibitory action of leguminous lectins on NaV current brings new insights for the investigation of sodium channels role in nociception.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.