Abstract
We prove a variational inequality linking the values of the free energy per site at different temperatures. This inequality is based on the Legendre transform of the free energy of two replicas of the system. We prove that equality holds whenβ≤1/\(\sqrt 2 \) and fails when 1/\(\sqrt 2 \) 1/\(\sqrt 2 \). We also use our inequality numerically within the low temperature region to improve (slightly) the best previously known lower bounds for the free energy and the ground state energy per site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.