Abstract
AbstractIn the first part of this series we characterized all linear operators on spaces of multivariate polynomials preserving the property of being nonvanishing in products of open circular domains. For such sets this completes the multivariate generalization of the classification program initiated by Pólya and Schur for univariate real polynomials. We build on these classification theorems to develop here a theory of multivariate stable polynomials. Applications and examples show that this theory provides a natural framework for dealing in a uniform way with Lee‐Yang type problems in statistical mechanics, combinatorics, and geometric function theory in one or several variables. In particular, we answer a question of Hinkkanen on multivariate apolarity. © 2009 Wiley Periodicals, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.