Abstract
In this paper, we present an iterative method for finding the least squares solution of a class of generalized Sylvester-transpose matrix equations with the norm inequality constraint. We prove that if the constrained matrix equations are consistent, the solution can be obtained within finite iterative steps in the absence of round-off errors; if constrained matrix equations are inconsistent, the least squares solution can be obtained within finite iterative steps in the absence of round-off errors. Finally, numerical examples are provided to illustrate the efficiency of the proposed method and testify the conclusions suggested in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.