Abstract

Evidence on the learning curve associated with robotic-arm-assisted total knee arthroplasty (ra-TKA) is scarce and mostly based on operative time. Thus, the objective of this study was to assess a surgeon's learning experience based on accuracy to reach planned limb alignment and its impact on surgical-characteristics, limb-alignment, and perioperative-outcomes. A retrospective chart review was conducted on a consecutive series of 204 primary ra-TKAs (patients), performed by a single surgeon in a single institution (3/7/2018-to-6/18/2019). Cumulative summation control sequential analysis was used for the assessment of the learning curve using accuracy of reaching the planned limb alignment establishing that surgeries had an initial-learning-phase, followed by a second-consolidation-phase. Baseline demographics, operative/tourniquet times, prosthesis type, and limb alignment were compared between these two phases. Length of stay, discharge disposition, complications, reoperation/readmission (90 days), and total morphine equivalents (TMEs) prescribed were compared between phases. Independent sample t-tests, and chi-squared analyses were performed. ra-TKA demonstrated a learning curve of 110 cases for reaching planned limb alignment (p = 0.012). Robotic experience resulted in significantly more proportion of knees in neutral-axis postoperatively (p = 0.035) and significant reduction in TMEs prescribed (p = 0.04). The mean operative and tourniquet time were found to be significantly lower in second-phase versus the first-phase (p for both < 0.0001). ra-TKA has a significant learning curve in clinical practice. A surgeon can reach the planned limb alignment with increased accuracy over time (110-cases). Progressive robotic learning and associated operative time efficiency can lead to significantly lower opioid consumption in patients undergoing TKA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.