Abstract

Leaf organogenesis is governed by the spatiotemporal activity of the leaf meristem, which has far greater mitotic activity than the shoot apical meristem. The two types of leaf meristems, the plate meristem and the marginal meristem, are distinguished by the location and longevity of their cell proliferative activity. Most leaf lamina outgrowth depends on the plate meristem. The presence of the marginal meristem was a matter of debate in classic anatomy, but recent genetic analyses of leaf growth in Arabidopsis thaliana confirmed its short-lived activity. Several genes key for the regulation of the two meristem types have been identified, and at least superficially, the systems appear to function independently, as they are regulated by different transcription factors and microRNAs. However, many of the details of these regulatory systems, including how the expression of these key factors is spatially regulated, remain unclear. One major unsolved question is the relationship between the plate meristem and the marginal meristem. Here, I present an overview of our current understanding of this topic and discuss questions that remain to be answered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call