Abstract

The morphology of the leaves of angiosperms exhibits remarkable diversity. One of the factors showing the greatest variability is the leaf index, namely, the ratio of leaf length to leaf width. In some cases, different varieties of a single species or closely related species can be distinguished by differences in leaf index. To some extent, the leaf index reflects the morphological adaptation of leaves to a particular environment. Moreover, physiological conditions or environmental factors can change the leaf index of an individual plant. No good tools have been available for studies of the mechanisms that underlie such biodiversity. However, we have recently obtained some, albeit fragmentary, information about molecular mechanisms of leaf morphogenesis as a result of studies of leaves of the model plant, Arabidopsis thaliana (L.) Heynh. For example, the ANGUSTIFOLIA gene, a homolog of animal CtBP genes, controls leaf width. ANGUSTIFOLIA appears to regulate the polar elongation of leaf cells via control of the arrangement of cortical microtubules. By contrast, the ROTUNDIFOLIA3 gene controls leaf length via the biosynthesis of steroid(s). We provide here an overview of the biodiversity exhibited by the leaf index of angiosperms. In particular, we consider information obtained from studies of mutants and transgenic strains of A. thaliana, from the so-called Evo/devo perspective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.