Abstract

Stem cells, by virtue of their defining property of self-renewal, represent an unlimited source of potentially functional human cells for basic research and regenerative medicine. Having validated the feasibility of cell-based therapeutic strategies over the past decade, mostly through the use of rodent cells, the stem cell field has now embarked upon a detailed characterization of human cells. Recent progress has included improved cell culture conditions, long-term propagation, directed differentiation, and transplantation of both human embryonic and somatic stem cells. Continued progress in understanding basic human stem cell biology, combined with a better handle on the fundamental pathophysiology of human diseases one wishes to target (including the use of human stem cells in primate and other large animal models of human disease), should help to move this technology closer to clinical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.